SU-E-T-132: Investigation of Photon and Proton Overlapping Fields in PRESAGE- Dosimeters.
نویسندگان
چکیده
PURPOSE To evaluate the effects of overlapping dose volumes for varying field arrangements in two formulations of PRESAGE®: one intended for, and irradiated with, proton beams and the other photon beams. METHODS For each treatment modality (photon, proton), three overlapping field setups were performed. These included a stationary dosimeter irradiated over six fractions, a dosimeter shifted laterally to the field to deliver a dose plateau in two fractions, and a dosimeter rotated on its axis to deliver a two-field (for protons) and four-field (for photons) box treatment overlapping in the center of the dosimeter. All subsequent fractions were given within ten minutes and never less than one minute apart. Two cylindrical PRESAGE® dosimeters approximately 7.5 cm in length by 7.5 cm in diameter were irradiated for each setup. The dosimeters were paired, with one dosimeter given total dose by a single fraction while the other followed one of the overlapping field setups. The dosimeters were analyzed using an optical CT scanner and exported to the CERR environment where the doses were compared between paired dosimeters. RESULTS Dose profile comparisons showed relative dose agreement between paired dosimeters within 5% along the SOBP region of the proton formulation. In the case of the fractionated proton irradiation, there was an over-response while other setups resulted in under-responses. Dose agreement between the photon dosimeter treated with six fractions showed a dose under-response within 11% and never less than 5%. Future measurements will include the remaining field setups. CONCLUSIONS The proton formulation of PRESAGE® showed good dose agreement between single and multiple field irradiations. While the photon formulation had slightly less agreement, additional field setup comparisons may show improved results. These results will aid future measurements of overlapping field treatment plans delivered to PRESAGE® for treatment verification for proton and photon 3D dosimetry.
منابع مشابه
SU-E-T-73: Investigation of 3D Dosimetry for Proton Therapy Using PRESAGE.
PURPOSE This investigation studies the feasibility of PRESAGE, a 3D polyurethane dosimeter, for relative dosimetry measurements of clinically relevant proton treatments using an anthropomorphic head phantom developed by the Radiological Physics Center (RPC). Performance of a low-LET dependent PRESAGE was evaluated by comparison to the traditionally used radiochromic film, EBT2, and thermolumine...
متن کاملProtons & Carbon Therapy
Monte Carlo water-equivalence study of two PRESAGE® formulations for proton beam dosimetry T Gorjiara, Z Kuncic, J Adamovics and C Baldock 2013 J. Phys.: Conf. Ser. 444 012090 PRESAGE® is a radiochromic solid dosimeter which shows promising potential for 3D proton beam dosimetry. Since an idea dosimeter should be water-equivalent, total depth dose distributions in two PRESAGE® formulations irra...
متن کاملDosimetric assessment of the PRESAGE dosimeter for a proton pencil beam
The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUS was used to implement dose distribu...
متن کاملMonte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry
PRESAGE is a radiochromic solid dosimeter which shows promising potential for 3D proton beam dosimetry. Since an idea dosimeter should be water-equivalent, total depth dose distributions in two PRESAGE formulations irradiated by a 62 MeV proton beam were compared with that in water using GEANT4 Monte Carlo simulations. The dose delivered by secondary particles was also calculated. Our results s...
متن کاملHow feasible is remote 3D dosimetry for MR guided Radiation Therapy (MRgRT)?
To develop and apply a remote dosimetry protocol with PRESAGE® radiochromic plastic and optical-CT readout in the validation of MRI guided radiation therapy (MRgRT) treatments (MRIdian® by ViewRay®). Through multi-institutional collaboration we performed PRESAGE® dosimetry studies in 4ml cuvettes to investigate dose-response linearity, MRcompatibility, and energy-independence. An open calibrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 6Part11 شماره
صفحات -
تاریخ انتشار 2012